Contact
QR code for the current URL

Story Box-ID: 1086860

B+B Thermo-Technik GmbH Heinrich-Hertz-Str. 4 78166 Donaueschingen, Germany http://www.bb-sensors.com/
Contact Ms Nikola Strack +49 771 831649
Company logo of B+B Thermo-Technik GmbH
B+B Thermo-Technik GmbH

Platin-Temperatursensoren: Unterschiede und Anwendungen

(PresseBox) (Donaueschingen, )
Die Temperatur ist eine Maßeinheit für den Wärmezustand eines Materials oder Mediums. Das meist genutzte Messverfahren zur Ermittlung der physikalischen Größe Temperatur ist die Messung mittels Widerstandsthermometer (Temperaturfühler). Bei einem solchen Widerstandsthermometer ändert sich der elektrische Widerstand des Sensors in Abhängigkeit der Temperatur.  Ein Widerstandsthermometer besteht aus einem Sensorelement und weiteren Bauteilen, wie z.B. Verbindungselementen und Anschlussleitungen (für genauere Informationen lesen Sie den Bericht über Widerstandsthermometer).

Eine weitverbreitete und sehr genaue Sensorelementart für die Temperaturmessung ist der Platinsensor.

Platin (Pt-) Sensoren gehören zu der Gruppe der RTD-Sensoren. RTD steht für „Resistance Temperature Detector“ und bezeichnet Sensoren, bei welchen der Widerstand von der Temperatur abhängig ist. Durch die Messung des Sensorwiderstandes kann somit die Temperatur bestimmt werden.

Platinsensoren gibt es in zwei unterschiedlichen Bauformen: Platin-Dünnschichtsensoren und Drahtgewickelte-Platinsensoren. Weit verbreitet ist die Platin-Dünnschichttechnik bei Pt-Sensorelementen. Die Dünnschichttechnik ist eine mikrostrukturierte Verbindung von Schichten aus Keramik, Metall und auch Glas. Neben der verbreiteten Schichttechnologie bestehen einige Pt-Sensorelemente aber auch aus einer feinen Platin-Drahtwicklung. Diese Drahtwicklung ist auf einem Grundkörper aufgebracht, der entweder aus Glas oder Keramik besteht. Diese Sensoren bezeichnet man als drahtgewickelte Platinsensoren.

Im Vergleich zu anderen RTDs sorgt der Werkstoff Platin bei den Pt-Sensoren für einen Widerstand, welcher als sehr langzeitstabil gilt. Ebenfalls ein Vorteil gegenüber anderen RTD-Sensoren ist der elektrische Widerstand der Platin-Sensoren, der sich über einen weiten Temperaturbereich nahezu linear mit der Temperatur ändert. Mit steigender Temperatur steigt auch der Widerstand. Dadurch sind Messungen über weite Temperaturbereiche möglich. Über die Messung des Spannungsabfalls wird ein Widerstandswert geliefert, der dann für die Berechnung der absoluten Temperatur herangezogen wird.

Sämtliche Platin-Temperatursensoren sind genormt nach DIN EN 60751 für den Temperaturbereich -200…+850 °C. Jedoch ist bei der Temperatur zu beachten, dass die Genauigkeitsklassen lediglich für bestimmte Temperaturbereiche gelten (siehe Tabelle). Diese Norm legt fest, wann welcher Sensor welche Genauigkeitsklasse vorweisen muss, um z.B. als Pt100 oder Pt1000 bezeichnet werden zu dürfen. Bei nicht normkonformen Platinsensoren muss daher eine Kennzeichnung angefügt werden. 

Genauigkeitsklassen nach DIN EN 60751:

Bei den Genauigkeitsklassen muss beachtet werden, dass die DIN EN 60751 im Jahre 2008 angepasst wurde. Seitdem unterscheidet die Norm zwischen den Sensorelementen (die eigentlichen Pt100, Pt1000, etc. Sensoren) und den Widerstandsthermometern (Fühlern). Des Weiteren unterscheidet die Norm nochmals zwischen drahtgewickelten- und Schicht-Widerständen.

Zusätzlich bietet B+B auch die Genauigkeitsklasse 1/10 DIN bis 350°C an. Hier handelt es sich um eine nicht normierte Klasse. Die Abweichung wird nach folgender Formel berechnet:

± (0,03 + 0,0005 x |T|) °C

Was bedeutet die Bezeichnung Pt100 bzw. Pt1000?

Die wohl gängigsten Pt-Sensoren sind der Pt100 und der Pt1000. Die Zahl hinter der Bezeichnung „Pt“ steht für den Widerstand bei der Temperatur 0 °C. Somit besitzt ein Pt100 Sensor einen Nennwiderstand von 100 Ω bei einer Temperatur von 0 °C. Schlussfolgernd besitzt der Pt1000 Sensor einen Nennwiderstand von 1000 Ω bei 0 °C.

Aber was bedeutet das? Hier ein Beispiel zur Veranschaulichung:

Pt100 besitzt bei 10°C = 103,9 Ω Nennwiderstand (Der Widerstand steigt mit der Temperatur, also von 0 °C auf 10 °C Widerstandsanstieg von 3,9 Ω)

Pt1000 besitzt bei 10°C = 1039 Ω Nennwiderstand (Der Widerstand steigt mit der Temperatur, also von 0 °C auf 10 °C Widerstandsanstieg von 39 Ω)

Natürlich gibt es neben Pt100 und Pt1000 Sensoren auch noch Pt200, Pt500, Pt10.000, etc. Sensoren, bei welchen die Zahl ebenfalls für den Widerstand bei 0 °C steht. Die Auswahl welcher Pt-Sensor verwendet wird, richtet sich meist an den Eingang der Regeleinheit, sowie nach der Genauigkeit. Z.B. macht es Sinn, bei einer 2-Leiterschaltung einen Pt1000 Sensor zu verwenden, da dort der Leitungswiderstand im Verhältnis einen geringen Einfluss auf das Messergebnis hat als bei einem Pt100. Der Grund liegt darin, dass der Basiswiderstand von einem Pt1000 Sensor 10-fach so hoch ist als bei einem Pt100 Sensor. Detaillierte Erklärungen zur den unterschiedlichen Leitertechniken bei Temperaturfühlern erhalten Sie im nächsten Anwendungsbericht von B+B.

B+B Thermo-Technik GmbH

B+B Thermo-Technik entwickelt und produziert seit 1984 innovative Produkt- und Branchenlösungen mit höchsten Qualitätsansprüchen für präzise Messaufgaben. Profitieren Sie also von unserer langjährigen Erfahrung und unserem Know-How. Standort der B+B Thermo-Technik GmbH ist Donaueschingen im Südwesten von Deutschland. Von hier aus werden die Qualitätsprodukte weltweit vertrieben. Durch neueste Forschungs-, Entwicklungs- und Fertigungstechnologien und die Zertifizierungen nach DIN EN ISO 9001:2015 und DIN EN 61340-5-1 produzieren wir unsere Produkte nach höchsten Qualitätsstandards. Auch den Service von Prüfzeugnissen und DAkkS-Kalibrierzertifikaten aus unseren hauseigenen Kalibrierlaboren bieten wir unseren Kunden an.
Qualität und Kundennähe sind feste Bestandteile der Strategie, weshalb die B+B Messtechnik überwiegend in Deutschland und in 100%-igen Tochterunternehmen weltweit hergestellt wird. Ständige Qualitätskontrollen, flexible Reaktionen auf Kundenwünsche und -änderungen sowie zeitnahe Lieferungen sind garantiert.

The publisher indicated in each case (see company info by clicking on image/title or company info in the right-hand column) is solely responsible for the stories above, the event or job offer shown and for the image and audio material displayed. As a rule, the publisher is also the author of the texts and the attached image, audio and information material. The use of information published here is generally free of charge for personal information and editorial processing. Please clarify any copyright issues with the stated publisher before further use. In case of publication, please send a specimen copy to service@pressebox.de.
Important note:

Systematic data storage as well as the use of even parts of this database are only permitted with the written consent of unn | UNITED NEWS NETWORK GmbH.

unn | UNITED NEWS NETWORK GmbH 2002–2024, All rights reserved

The publisher indicated in each case (see company info by clicking on image/title or company info in the right-hand column) is solely responsible for the stories above, the event or job offer shown and for the image and audio material displayed. As a rule, the publisher is also the author of the texts and the attached image, audio and information material. The use of information published here is generally free of charge for personal information and editorial processing. Please clarify any copyright issues with the stated publisher before further use. In case of publication, please send a specimen copy to service@pressebox.de.